Explaining Constraint Programming
نویسنده
چکیده
We discuss here constraint programming (CP) by using a proof-theoretic perspective. To this end we identify three levels of abstraction. Each level sheds light on the essence of CP. In particular, the highest level allows us to bring CP closer to the computation as deduction paradigm. At the middle level we can explain various constraint propagation algorithms. Finally, at the lowest level we can address the issue of automatic generation and optimization of the constraint propagation algorithms.
منابع مشابه
Explaining alldifferent
Lazy clause generation is a powerful approach to reducing search in constraint programming. For use in a lazy clause generation solver, global constraints must be extended to explain themselves. Alternatively they can be decomposed into simpler constraints which already have explanation capability. In this paper we examine different propagation mechanisms for the alldifferent constraint, and sh...
متن کاملComparing Mixed-Integer and Constraint Programming for the No-Wait Flow Shop Problem with Due Date Constraints
The impetus for this research was examining a flow shop problem in which tasks were expected to be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated based on makespan. To solve the NP-Hard problem, we developed two mathematical mode...
متن کاملConvex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions
We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملMulti-item inventory model with probabilistic demand function under permissible delay in payment and fuzzy-stochastic budget constraint: A signomial geometric programming method
This study proposes a new multi-item inventory model with hybrid cost parameters under a fuzzy-stochastic constraint and permissible delay in payment. The price and marketing expenditure dependent stochastic demand and the demand dependent the unit production cost are considered. Shortages are allowed and partially backordered. The main objective of this paper is to determine selling price, mar...
متن کامل